1.17 The circuit shown in Fig. P1.17 represents the equivalent circuit of an unbalanced bridge. It is required to calculate the current in the detector branch (R5) and the voltage across it. Although this can be done by using loop and node equations, a much easier approach is possible: Find the Th´evenin equivalent of the circuit to the left of node 1 and the Th´evenin equivalent of the circuit to the right of node 2. Then solve the resulting simplified circuit.

17 11 - 1.17 The circuit shown in Fig. P1.17 represents the equivalent circuit of an unbalanced bridge. It is required to calculate the current in the detector branch (R5) and the voltage across it. Although this can be done by using loop and node equations, a much easier approach is possible: Find the Th´evenin equivalent of the circuit to the left of node 1 and the Th´evenin equivalent of the circuit to the right of node 2. Then solve the resulting simplified circuit.

This content is for Premium members only.
sign up for premium and access unlimited solutions for a month at just 5$(not renewed automatically)


images - 1.17 The circuit shown in Fig. P1.17 represents the equivalent circuit of an unbalanced bridge. It is required to calculate the current in the detector branch (R5) and the voltage across it. Although this can be done by using loop and node equations, a much easier approach is possible: Find the Th´evenin equivalent of the circuit to the left of node 1 and the Th´evenin equivalent of the circuit to the right of node 2. Then solve the resulting simplified circuit.

already a member please login


2   +   3   =