1.45 A 10-mV signal source having an internal resistance of 100 k is connected to an amplifier for which the input resistance is 10 k, the open-circuit voltage gain is 1000 V/V, and the output resistance is 1 k. The amplifier is connected in turn to a 100- load. What overall voltage gain results as measured from the source internal voltage to the load? Where did all the gain go? What would the gain be if the source was connected directly to the load? What is the ratio of these two gains? This ratio is a useful measure of the benefit the amplifier brings

45 9 - 1.45 A 10-mV signal source having an internal resistance of 100 k is connected to an amplifier for which the input resistance is 10 k, the open-circuit voltage gain is 1000 V/V, and the output resistance is 1 k. The amplifier is connected in turn to a 100- load. What overall voltage gain results as measured from the source internal voltage to the load? Where did all the gain go? What would the gain be if the source was connected directly to the load? What is the ratio of these two gains? This ratio is a useful measure of the benefit the amplifier brings

This content is for Premium members only.
sign up for premium and access unlimited solutions for a month at just 5$(not renewed automatically)


images - 1.45 A 10-mV signal source having an internal resistance of 100 k is connected to an amplifier for which the input resistance is 10 k, the open-circuit voltage gain is 1000 V/V, and the output resistance is 1 k. The amplifier is connected in turn to a 100- load. What overall voltage gain results as measured from the source internal voltage to the load? Where did all the gain go? What would the gain be if the source was connected directly to the load? What is the ratio of these two gains? This ratio is a useful measure of the benefit the amplifier brings

already a member please login


4   +   6   =