*6.67 Using β=∞, design the circuit shown in Fig. P6.67 so that the emitter currents of Q 1 , Q 2 , and Q 3 are 0.5 mA, 0.5 mA, and 1 mA, respectively, and V 3 V 5 =−2 V, and V 7 =1 V. For each resistor, select the nearest standard value utilizing the table of standard values for 5% resistors in Appendix J. Now, for β=100, find the values of V 3 , V 4 , V 5 , V 6 , and V 7

image 290 - *6.67 Using β=∞, design the circuit shown in Fig. P6.67 so that the emitter currents of Q 1 , Q 2 , and Q 3 are 0.5 mA, 0.5 mA, and 1 mA, respectively, and V 3 V 5 =−2 V, and V 7 =1 V. For each resistor, select the nearest standard value utilizing the table of standard values for 5% resistors in Appendix J. Now, for β=100, find the values of V 3 , V 4 , V 5 , V 6 , and V 7image 291 - *6.67 Using β=∞, design the circuit shown in Fig. P6.67 so that the emitter currents of Q 1 , Q 2 , and Q 3 are 0.5 mA, 0.5 mA, and 1 mA, respectively, and V 3 V 5 =−2 V, and V 7 =1 V. For each resistor, select the nearest standard value utilizing the table of standard values for 5% resistors in Appendix J. Now, for β=100, find the values of V 3 , V 4 , V 5 , V 6 , and V 7

This content is for Premium members only.
sign up for premium and access unlimited solutions for a month at just 5$(not renewed automatically)


images - *6.67 Using β=∞, design the circuit shown in Fig. P6.67 so that the emitter currents of Q 1 , Q 2 , and Q 3 are 0.5 mA, 0.5 mA, and 1 mA, respectively, and V 3 V 5 =−2 V, and V 7 =1 V. For each resistor, select the nearest standard value utilizing the table of standard values for 5% resistors in Appendix J. Now, for β=100, find the values of V 3 , V 4 , V 5 , V 6 , and V 7

already a member please login


5   +   8   =