7.34 Consider a transistor biased to operate in the active mode at a dc collector current I C. Calculate the collector signal current as a fraction of I C (i.e., ic/IC) for input signals vbe of +1 mV, –1 mV, +2 mV, –2 mV, +5 mV, –5 mV, +8 mV, –8 mV, +10 mV, –10 mV, +12 mV, and –12 mV. In each case do the calculation two ways: (a) using the exponential characteristic, and (b) using the small-signal approximation. Present your results in the form of a table that includes a column for the error introduced by the small-signal approximation. Comment on the range of validity of the small-signal approximation.

34 9 - 7.34 Consider a transistor biased to operate in the active mode at a dc collector current I C. Calculate the collector signal current as a fraction of I C (i.e., ic/IC) for input signals vbe of +1 mV, –1 mV, +2 mV, –2 mV, +5 mV, –5 mV, +8 mV, –8 mV, +10 mV, –10 mV, +12 mV, and –12 mV. In each case do the calculation two ways: (a) using the exponential characteristic, and (b) using the small-signal approximation. Present your results in the form of a table that includes a column for the error introduced by the small-signal approximation. Comment on the range of validity of the small-signal approximation.

This content is for Premium members only.
sign up for premium and access unlimited solutions for a month at just 5$(not renewed automatically)


images - 7.34 Consider a transistor biased to operate in the active mode at a dc collector current I C. Calculate the collector signal current as a fraction of I C (i.e., ic/IC) for input signals vbe of +1 mV, –1 mV, +2 mV, –2 mV, +5 mV, –5 mV, +8 mV, –8 mV, +10 mV, –10 mV, +12 mV, and –12 mV. In each case do the calculation two ways: (a) using the exponential characteristic, and (b) using the small-signal approximation. Present your results in the form of a table that includes a column for the error introduced by the small-signal approximation. Comment on the range of validity of the small-signal approximation.

already a member please login