BC:3.4 Consider the LTI (linear time invariant) discrete time systems with the following impulse responses, h[n]. For each system, determine whether or not the system is causal or noncausal and whether or not the system is FIR (finite impulse response) or IIR (infinite impulse response). Give a brief justification. a.) h[n] = (0.8)^(n+1) u[n + 1] b.) h[n] = (0.8)^(n−1) u[n] c.) h[n] = (0.8)^(n+2) (u[n + 2] − u[n − 3]) d.) h[n] = (0.8j)^(n) u[n − 1] − (0.8j)^(n) u[n − 5]) e.) h[n] = (0.8)^(n) u[n] − (0.8)^(n−2) u[n − 2]

BC:3.4 Consider the LTI (linear time invariant) discrete time systems with the following impulse responses, h[n]. For each system, determine whether or not the system is causal or noncausal and whether or not the system is FIR (finite impulse response) or IIR (infinite impulse response). Give a brief justification.
a.) h[n] = (0.8)^(n+1) u[n + 1]

b.) h[n] = (0.8)^(n−1) u[n]

c.) h[n] = (0.8)^(n+2) (u[n + 2] − u[n − 3])

d.) h[n] = (0.8j)^(n) u[n − 1] − (0.8j)^(n) u[n − 5])

e.) h[n] = (0.8)^(n) u[n] − (0.8)^(n−2) u[n − 2]

This content is for Premium members only.
sign up for premium and access unlimited solutions for a month at just 5$(not renewed automatically)


images - BC:3.4 Consider the LTI (linear time invariant) discrete time systems with the following impulse responses, h[n]. For each system, determine whether or not the system is causal or noncausal and whether or not the system is FIR (finite impulse response) or IIR (infinite impulse response). Give a brief justification. a.) h[n] = (0.8)^(n+1) u[n + 1] b.) h[n] = (0.8)^(n−1) u[n] c.) h[n] = (0.8)^(n+2) (u[n + 2] − u[n − 3]) d.) h[n] = (0.8j)^(n) u[n − 1] − (0.8j)^(n) u[n − 5]) e.) h[n] = (0.8)^(n) u[n] − (0.8)^(n−2) u[n − 2]

already a member please login