D 2.92 Figure P2.92 shows a circuit that performs the high-pass, single-time-constant function. Such a circuit is known as a first-order high-pass active filter. Derive the transfer function and show that the high-frequency gain is (−R2/R1) and the 3-dB frequency ω0 = 1/CR1. Design the circuit to obtain a high-frequency input resistance of 1 k, a high-frequency gain of 40 dB, and a 3-dB frequency of 2 kHz. At what frequency does the magnitude of the transfer function reduce to unity?

92 - D 2.92 Figure P2.92 shows a circuit that performs the high-pass, single-time-constant function. Such a circuit is known as a first-order high-pass active filter. Derive the transfer function and show that the high-frequency gain is (−R2/R1) and the 3-dB frequency ω0 = 1/CR1. Design the circuit to obtain a high-frequency input resistance of 1 k, a high-frequency gain of 40 dB, and a 3-dB frequency of 2 kHz. At what frequency does the magnitude of the transfer function reduce to unity?

This content is for Premium members only.
sign up for premium and access unlimited solutions for a month at just 5$(not renewed automatically)


images - D 2.92 Figure P2.92 shows a circuit that performs the high-pass, single-time-constant function. Such a circuit is known as a first-order high-pass active filter. Derive the transfer function and show that the high-frequency gain is (−R2/R1) and the 3-dB frequency ω0 = 1/CR1. Design the circuit to obtain a high-frequency input resistance of 1 k, a high-frequency gain of 40 dB, and a 3-dB frequency of 2 kHz. At what frequency does the magnitude of the transfer function reduce to unity?

already a member please login


0   +   1   =