The current gain transfer function of a second order linear time-invariant (LTI) network is shown. What sinusoidal excitation i_g(t) gives rise to a sinusoidal steady state output response i_o, sss(t) = – cos(2t) u(t) = cos(2t plusminus 180 degree) u(t) A. H_1(s) = I_0(s)/I_g(s) = 2(s^2 – 4)/s^2 + 8s + 20 i_g(t) = Squareroot 2 cos (2t + 45 degree) u(t) A

369 - The current gain transfer function of a second order linear time-invariant (LTI) network is shown. What sinusoidal excitation i_g(t) gives rise to a sinusoidal steady state output response i_o, sss(t) = - cos(2t) u(t) = cos(2t plusminus 180 degree) u(t) A. H_1(s) = I_0(s)/I_g(s) = 2(s^2 - 4)/s^2 + 8s + 20 i_g(t) = Squareroot 2 cos (2t + 45 degree) u(t) A

This content is for Premium members only.
sign up for premium and access unlimited solutions for a month at just 5$(not renewed automatically)


images - The current gain transfer function of a second order linear time-invariant (LTI) network is shown. What sinusoidal excitation i_g(t) gives rise to a sinusoidal steady state output response i_o, sss(t) = - cos(2t) u(t) = cos(2t plusminus 180 degree) u(t) A. H_1(s) = I_0(s)/I_g(s) = 2(s^2 - 4)/s^2 + 8s + 20 i_g(t) = Squareroot 2 cos (2t + 45 degree) u(t) A

already a member please login