The joint probability density function of X and Y is given by f(x,y)=67(x2+xy2)0Y}. (d) Find P{Y> \frac { 1 } { 2 } | X < \frac { 1 } { 2 } } , (e) Find E[X]. (f) Find E[Y}.

The joint probability density function of X and Y is given by 

f(x,y)=67(x2+xy2)0<x<1,0<y<2

” role=”presentation” style=”box-sizing: border-box; display: inline; font-style: normal; font-weight: normal; line-height: normal; font-size: 16px; text-indent: 0px; text-align: center; text-transform: none; letter-spacing: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative”>

f(x,y)=67(x2+xy2)0<x<1,0<y<2

” role=”presentation” style=”box-sizing: border-box; display: inline; font-style: normal; font-weight: normal; line-height: normal; font-size: 16px; text-indent: 0px; text-align: center; text-transform: none; letter-spacing: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative”>

(a) Verify that this is indeed a joint density function. (b) Compute the density function of X. (c) Find P{X>Y}. (d) Find P{Y>

\frac { 1 } { 2 } | X < \frac { 1 } { 2 } }

” role=”presentation” style=”box-sizing: border-box; display: inline; font-style: normal; font-weight: normal; line-height: normal; font-size: 16px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative”>

\frac { 1 } { 2 } | X < \frac { 1 } { 2 } }

” role=”presentation” style=”box-sizing: border-box; display: inline; font-style: normal; font-weight: normal; line-height: normal; font-size: 16px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative”>

This content is for Premium members only.
sign up for premium and access unlimited solutions for a month at just 5$(not renewed automatically)


images - The joint probability density function of X and Y is given by f(x,y)=67(x2+xy2)0<x<1,0<y<2 (a) Verify that this is indeed a joint density function. (b) Compute the density function of X. (c) Find P{X>Y}. (d) Find P{Y> \frac { 1 } { 2 } | X < \frac { 1 } { 2 } } , (e) Find E[X]. (f) Find E[Y}.

already a member please login


9   +   5   =